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A derivation of an additional body force term representing blade lean effects in the radial 
equilibrium equation is presented, and the implementation of the extended equation in 
turbine throughflow calculations is described. The force includes a dissipative component 
associated with blade viscous losses complying with Horlock's recommendations on 
consistent modeling of losses. The required body force is evaluated entirely within the 
throughflow method, and auxiliary blade-to-blade calculations are not required. The effect 
of 15 ° of stator blade lean is determined for a single-stage transonic test problem. 
Comparisons with three-dimensional flow computations made with an Euler solver show 
good agreement, and the results demonstrate a significant influence of lean on the flow 
field at rotor inlet. 
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Introduction 

There is increasing interest in the use of circumferential blade 
lean in the final stages of 1.p. steam turbines. Leaning stator 
blades in the direction of rotation affords the designer an 
additional degree of freedom in controlling the hub pressure 
and the incidence and relative Mach number of the flow incident 
to the rotor. Fully three-dimensional (3-D) methods in which 
the blade surfaces are completely specified; e.g., Denton I and 
Dawes 2 include blade lean effects automatically. These methods 
require extensive data input and long computation times and 
are best used sparingly for detailed evaluation of individual 
blade rows or stages. Turbine design requires consideration of 
the interaction between multiple stages and the evaluation of 
a variety of geometrical proposals; consequently axisymmetric 
throughflow methods retain an important role in the theoretical 
prediction of the flow field. 

The streamline curvature throughflow program SLEQ 
(Denton 3) is in extensive use for theoretical studies of steam 
turbines. The flow is modeled as being axisymmetric and 
primarily inviscid with the flow equations given in the streamline 
curvature formulation. Discrete increases of entropy determined 
from loss correlations are imposed at calculation stations to 
represent viscous losses. In the original form of the program 
blade forces did not appear explicitly in the radial equilibrium 
equation (R.E.E.). Flow swirl angles were prescribed within 
blade passages and at trailing edges, thereby implying tangential 
and axial forces, while radial forces were simply neglected. 
When blade surfaces are not everywhere parallel with radii, 
they inevitably contribute some net radial force, which becomes 
particularly significant if a substantial degree of blade lean is 
present. Within an axisymmetric formulation this can best be 
introduced as a body force acting on the fluid which contributes 
an additional term in the radial equilibrium equation. The 
imposed entropy increases imply a drag force which also 
contributes a radial component. As pointed out by Horlock, 4 
this implied drag force should be parallel with the flow direction 
if the loss model is to be consistent. 
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Bosman and Marsh 5 derived a Poisson equation for the 
axisymmetric stream function incorporating blade lean effects 
and consistent loss modeling as an extension of the matrix 
throughflow method. A derivation of a radial equilibrium 
equation with the corresponding extensions for the streamline 
curvature formulation of the throughflow method is given in 
the first section of this paper. The R.E.E. obtained is shown to 
conform with that given previously by Wennerstrom. 6 The 
derivation is included for the purposes of review and clarity, 
in a notation complying with current conventions for specifying 
blade geometry and flow vectors. Although the extended form 
of the R.E.E. has been known for more than a decade, there 
are, to the authors'  knowledge, no reports in the literature of 
its implementation in throughflow computations except where 
body forces have been obtained via blade to blade calculations 
(e.g., Novak and Hearsey 7 and Jennions and StowS). By 
contrast, in the present treatment, the evaluation of the body 
force giving the blade lean effect forms an integral part of the 
throughflow calculation and is performed to an accuracy 
comparable with the other aspects of the method. 

In the succeeding sections results obtained with the extended 
R.E.E. included in throughflow calculations for a single turbine 
stage with stator blade lean are presented. Comparison is then 
made with results from the 3-D inviscid time marching program 
STAGE3D of Denton I in order to assess the success of the 
body force representation. 

Geometrical specification of a leaned blade 

The "quasi-orthogonal" mesh lines (q.o.'s) containing calcu- 
lation stations at entry and exit planes of a blade row are 
defined by the line intersection of the meridional (r-z) plane 
with conical surface containing the complete set of blade edges 
within the annulus. The q.o.'s are defined with zero lean for 
simplicity, since, given the assumption of axisymmetry, there 
is no advantage in choosing them coincident with leaned blade 
edges. The angle between the q.o. direction q and the radial 
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direction in the meridional plane is defined as the sweep angle 
e. It is convenient to specify blade lean by the angle 6, between 
the projection of the trailing edge into the r-O plane and the 
radial direction. That is, 6, refers to the trailing edge as "seen" 
from downstream and is measured positive in the direction of 
rotation. The lean 6 of the intersection of the blade surface with 
the r-O plane differs slightly from 6 t when the q.o. is swept. It 
can be deduced from Figure l(a) that 

tan 6 = tan 6 , -  tan % tan e 

The specification of a blade in a throughflow calculation 
requires q.o.'s at leading and trailing edges and one or more 
intermediate blade passage q.o.'s. Provision is made for each 
q.o. to have individual values of sweep and blade lean, the 
treatment of leading edge and passage q.o.'s being similar to 
that just described. 

The blade-to-blade geometry is specified in the axial tangential 
(z-O) plane. For a straight-backed blade the blade surface angle 
s0 is calculated from the opening/pitch ratio (i.e., ~o = cos- ~ o/s). 
Three-dimensional calculations indicated that s0 changed very 
little with 15 ° variation in lean angle; hence it was assumed to 
be independent of lean in the test problem. 

Further geometrical considerations regarding the effect of 
blade lean on the flow velocity vector are contained in Equation 
13. 

Der iva t ion  of  the  radial equ i l ib r ium equat ion  
including body force  te rms 

The radial equilibrium equation employed in throughflow 
programs has been quoted in various forms following the initial 
derivations given by Smith 9 and Novak. ~° We shall use as a 
basis for the derivation of the R.E.E. the formulation of the 
Euler equations given by Novak and Hearsey ~1 and include 
body forces to represent blade effects in the manner of Jennions 
and Stow. 8 The effect of blade surface pressures will be absorbed 
into a body force vector F having components F z, F,. F 0. A 
subdivision of F into conservative and dissipative components 
is necessary if a consistent loss model as discussed by Horlock 4 
is to be realized. The inviscid axial, radial, and tangential 
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equations read 

1 Op _ OC~ 
pOz C" ~mm + F" (1) 

lOP_ C2 C, OC, +F 
p& r t~m " (2) 

C,, 0 
0=  - - -  (rCe)+Fo (3) 

r 0m 

For a quasi-orthogonal with sweep e we have the transformation 

- -  = cos e - -  + sin e - -  (4) 
0q dr 0z 

where q denotes distance measured along the q.o. When q.o.'s 
are chosen along blade leading and trailing edges they define 
flow conditions over conical surfaces of rotation, given that 
axisymmetry is assumed. Combining Equations 1 and 2 with 
the transformation 4 gives 

lop C2 cos e -C~  OC, OC= 
- - -  cos ~ -  C,. ~ m  sin e + F, cos e + F= sin 

Om 

(5) 
pOq r 

Now 

1 0gb 
C, = Cm sin ~b, C= = Cm cos ~b, - 

rra 8m 

where rm is the streamlines meridional radius of curvature. After 
substitution and some rearrangement we obtain for the radial 
equilibrium equation 

10p C 2 C 2 - C  0C,, 
- cos e -  v~ cos(~b +e) sin(~b+e) 

p t~q r rm "* 0m 

+ F, cos e + Fz sin e (6) 

Let us split the body force vector F into subvectors N and D 
acting in directions normal to and tangential to the blade 
surface: 

F = N + D  

N results from the blade surface pressure distributions, while 
D is a dissipative force representing surface shear forces. It can 

N o t a t i o n  

C Gas velocity 
D Dissipative component of blade force acting on 

the fluid 
F Body force vector 
h, h o Enthalpy, total enthalpy 
I Rothalpy 
i , j , k  Unit vectors in axial, tangential, and radial 

directions 
I1, 12 Unit vectors defining the blade surface 
m Meridional coordinate 
N Normal component of blade force 
p Static pressure 
q Quasi-orthogonal coordinate 
r Radius 
r m Radius of curvature 
s Entropy 
T Static temperature 
V Gas velocity relative to rotor 

6 

P 
tO 

Subscripts 
Z, O, r 
m, q 

t 

Axial coordinate 
Flow swirl angle measured from the axial direction 
defined positive for swirl in the direction of blade 
rotation 
Flow swirl angle in the stream surface plane 
q.o. lean angle measured positive in the direction 
of rotation 
q.o. sweep angle between radial and q.o. directions 
in the meridional plane, measured positive when 
the outer end of the q.o. lies downstream of the 
hub/q.o, intercept 
Flow pitch angle in the meridional plane 
Density 
Angular velocity of rotor 

Indicate axial, tangential, and radial components 
Indicate meridional and quasi-orthogonal 
components 
Value describing blade trailing edge 
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Figure l(a) Ouasi-orthogonal and trailing edge geometry for a 
leaned blade 

be seen in Figure l(a) that the vectors 

I1 = i  cos ~o+J sin ct 0 

12= j sin 6 + k c o s  6 

are tangential to the blade surface; hence the normal force 
vector must satisfy 

N- l l  =0,  N. I  2 = 0  

i.e., 

N= = - N o  tan ct o, N, = - N o  tan ~ (7) 

The drag vector D is opposed to  the velocity vector C, so 
resolving vectors in the axial, tangential and radial directions 
with the aid of Equation 7 and Figure 2 we have 

F== - N o  tan ~ o - D  cos ~ cos q~ (8) 

Fo = No - D sin 5 (9) 

F,= - N o  tan 6 - D  cos ~ sin q~ (10) 

It is convenient to eliminate N o from the component equations 
and express N= and Nr in terms of Fo and D, since Fo is known 
from the overall change in angular momentum (Equation 3), 
and D from Horlock's consistent loss arguments (Equation 16). 
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r 

Figure 1 (b) 
edges 

Axial v iew from downstream of leaned blade trailing 
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¢ 

Figure 2 Velocity components and dissipative force D lying in a 
leaned blade surface 
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Multiplying Equation 9 by tan ct o and tan 6 and summing with 
Equations 8 and 10, respectively, gives 

Fz = - F 0  tan ct o -D( s in  ~ tan ct o + cos ~ cos ~b) (11) 

F , =  - F  8 tan 6 - D ( s i n  ~ tan 6+cos  ~ sin q~) (12) 

Inspection of the geometry of flow vectors in Figure 2 reveals 
that swirl angles ~ in the stream surface are related to angles 
% in the blade-to-blade plane by the relation 

tan ~ = t a n  ct o cos q~ + sin tp tan 6 (13) 

The meridional force Fm consistent with specified losses is given 
by Gallimore lz for the zero lean case. Resolving in the 
meridional direction, we have 

F m = F z cos ~b + F. sin ~b 

Substituting from Equations 11 and 12 and setting 6=0 ,  we 
obtain 

F,.= - F  e tan ~ - D / c o s  ~ (14) 

This agrees with Gallimore's result except for an apparent 
typographical error in the sign of the first term on the RHS. 
The body force component in the quasi-orthogonal direction 
required in the radial equilibrium equation (6) is given by 

Fq = F r cos e + F= sin e 

Substituting for F, and F= from Equations 11 and 12 and 
recalling the geometrical relation between 6 and fit given in the 
preceding section, we find that 

Fq = - F o tan ft cos 

- D [ s i n  ~ tan 6t cos e + cos ~ sin(~b + e)] (15) 

The consistent loss argument (Horlock 4) relates the dissipative 
force D to the meridional entropy gradient 

&s 
D = T - -  cos ~ (16) 

dm 

Substituting for F o and D from Equations 3 and 16, we have 

Cm t3 
Fq (rCo) tan 6 t cos e 

r t3m 

as 
- T - -  [sin ~ cos ~ tan ff cos e-F cos 2 ~ sin(~b +a)]  (17) 

8m 

Reformulating Equation 6 in terms of the derivative of meridional 
velocity by utilizing the relationships 

T t3qt~S _ ~3q~3h Plt~pdq and h o = h + ~ ( C ~ + C  2) 

yields the final working form of the R.E.E.: 

- - -  m t3 ( C 2 )  = t ~ h ° - T a s  1 (r2Cg) 
2 Oq ~q t3q 2r 2 t3q 

c~ ac . .  
+ - - c o s ( d p + e ) + C m ~ - - s m ( ~ p + e ) - F ~  (18) 

r m tTm 

Equations 17 and 18 are equivalent to Equation 30 of 
Wennerstrom. 6 Wennerstrom's sign convention for lean and 
sweep angles is the reverse of that adopted here, and he gives 
the rotating coordinate form. This can be obtained from 
Equation 18 by making the substitutions 

C,. = V,., Ce = Vo + ogr 

V 2 o)2r 2 
l = h 4  

2 2 
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I m p l e m e n t a t i o n  o f  t h e  r e v i s e d  R.E.E.  

The meridional derivative of angular momentum appearing in 
the R.E.E. represents the tangential component of blade forces 
(see Equation 3) and is calculated via flow directions imposed 
in the axial tangential (blade-to-blade) plane at each blade 
passage or trailing edge q.o. In throughflow analysis rather 
coarse grids are usually employed, so it is necessary to consider 
the numerical representation of the meridional derivative with 
some care. In order to preserve consistency in the integral sense, 
upwind differences of rCe are used. This ensures that at each 
q.o. a force is imposed accounting for the total tangential flow 
deflection incurred up to that station. 

Imposed flow swirl angles are calculated from camber lines 
for passage q.o.'s. At trailing edges exit swirl angles are 
determined from a correlation with opening-to-pitch ratio. The 
corresponding angles in the stream surface are given by 
Equation 13, and a supersonic deviation is included in regions 
where the blade row is choked. These stream surface swirl angles 
determine the circumferential velocity components via the 
relation 

C O = C m tan 

where ~ is the angle between the resultant velocity and 
meridional direction. Supersonic deviation angles are calculated 
using an extension of the method derived by Scholz. 13 An 
allowance for profile losses is made in determining the choking 
flow, and the equation of momentum in the blade back direction 
is utilized. Shock losses for a specified exit Mach number are 
given by the method, just as in the analytical oblique shock 
and Rankine-Hugoniot relations in gas dynamics. 

R e s u l t s  and  d i s c u s s i o n  

In order to assess the success of the body force representation 
described, calculations were made for a hypothetical turbine 
stage with both throughflow and the fully three-dimensional 
Euler solver STAGE3D (Denton ~). It was considered important 
to compute the complete final stage field in order to separate 
the effects of lean at the stator trailing edge from the imposed 
downstream boundary conditions. Stator lean angles of 0 ° and 
15 ° were considered. The small inherent lean of the rotor, due 
to blade twist, was neglected in the throughflow calculations. 
For  the latter the stator blade was described by q.o.'s at leading 
and trailing edges and one or more in the blade passage. 
Schematic meridional geometry and stator blade profiles for 
the stage are shown in Figure 3. 

Entry conditions and the downstream reference pressure for 
both the 3-D and throughflow calculations were identical, and 
the fluid was assumed to be a perfect gas with a specific heat 
ratio of 1.32. A routine for circumferentially averaging the 3-D 
results was appended to STAGE3D. The mean flow required 
to conserve the integrated mass flow, total enthalpy, and 
impulse function was calculated. The entropy of the mean flow 
was then found, and the corresponding numerical loss coefficient 
calculated. 

The effect of stator blade lean on the streamlines of the 
throughflow calculation is shown in Figure 4, in this case with 
two passage q.o.'s. The action of the radial force deflecting the 
streamlines toward the hub within the blade row is dearly 
visible. When only a single passage q.o. at mid axial chord was 
specified, the deflection was delayed until the trailing edge, but 
the distributions of flow parameters and downstream pattern 
differed very little from the case shown. 

We have made a point of calculating the radial blade force 
terms in the throughflow R.E.E. via upwind differencing. 
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Figure 3(b) Stator blade passage and profile shapes 

Calculations were made with alternative forms of differencing 
for comparison. As an example, for the case with two passage 
q.o.'s, centered differencing was found to diminish by 36% the 
change in hub Mach number resulting from lean. For greater 
numbers of passage q.o.'s the difference between these alterna- 
tives will be less important, but for coarse q.o. spacings upwind 
differencing showed better agreement with the Mach number 
profiles obtained from 3-D Euler calculations. The flow distri- 
butions which follow were obtained with a single passage q.o. 

The radial distributions of Mach number and pressure at 
stator exit calculated by SLEQ are shown in Figures 5 and 6 
together with circumferentially averaged results from STAGE3D 
for stator lean angles of 0 ° and 15 °. The changes in the hub 
and tip Mach numbers due to lean calculated by both methods 
are in good agreement. In the throughflow calculations the 
maximum Mach number which occurred at the hub was 
significantly reduced from 1.55 to 1.27 by the inclusion of the 

blade lean, though the Mach number levels were about 5% 
higher than in the averaged 3-D results. 

The STAGE3D calculations, although nominally inviscid, 
were found to have stator losses up to 10% in magnitude arising 
from numerical viscosity implicit in the method and from 
aerodynamic shocks in the hub region. The profile losses 
calculated from the correlation of Balje and BinsleyZ4 employed 
in SLEQ were about 5%, and this accounts to a large extent 
for the differences in Mach number at the stator exit. This was 
confirmed by a numerical experiment in which the Mach 
number profiles were forced into close coincidence by imposing 
the STAGE3D loss levels in the SLEQ throughflow calculation. 

Novak and Hearsey, 7 using blade-to-blade calculations in 
conjunction with the R.E.E., reported only a minor influence 
of blade lean on root reaction ratio. Figure 6 shows that a 
significant influence of lean on hub pressure was obtained in 
the present study. The hub conditions were supersonic rather 
than subsonic as in Novak's case, and this probably accounts 
for the size of the effect. A considerable part of the appeal of 
the method described here lies in the fact that a hybrid 
combination of throughflow and blade-to-blade calculations is 
not required. 

Table 1 shows the hub Mach numbers and overall mass flows 
G obtained with both calculation methods. The methods show 
very good mass flow agreement for the leaned case, while the 
3-D calculation was slightly lower (1.4%) for the zero lean 
geometry. These differences are, perhaps, less than one would 
expect to result from the difference in loss levels between the 
calculations. This suggests that stream surface twist due to 

S t = 0 o 

- -  S t = 15 ° 

ROTO- 

L.E. 
STATOR 

T.E. / ~ 

L.E. I / /  / 

J 

.- / ¢  

II 

Figure4 Streamline positions computed by the throughflow 
program showing the effect of lean 
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Figure 5 Radial distributions of Mach number at stator blade 
trailing edge 

nonaxisymmetry is also a significant influence. The effect of 
dissipative terms in the R.E.E. was isolated in a numerical 
experiment. Their effect was found to be very minor in the test 
problem, since they contributed a change of less than 0.005 in 
stator exit Mach number at any radial location. They may, 
however, be significant in off-design conditions or in any 
application where q.o.'s are more closely aligned with the 
stream direction. 

The radial distributions of flow swirl angles at the stator 
trailing edge are shown in Figure 7. For  the leaned blades the 
agreement between throughflow and Euler programs is very 
good, exhibiting a small supersonic deviation from the subsonic 
correlation angle cos-  ~ o/s. In the zero lean case, however, the 
throughflow calculation shows supersonic deviation reaching 
7 ° at the hub, whereas the 3-D Euler calculation showed 
supersonic deviation initially rising with Mach number but, 
somewhat surprisingly, falling away to zero at the hub. 

The numerical viscosity in the Euler solver mentioned 
previously would be expected to generate some secondary flow 
opposing supersonic deviation. The effect would be strongest at 
the hub where it is reinforced by the radial pressure gradient. 
The presence of lean reduces radial pressure gradient, and the 
velocities reached are generally lower; this may account for the 
better agreement found for the lean case. The computed 
distributions of absolute rotor exit velocity (Figure 8(a)) are in 
very good agreement for both cases. The effect of lean has been 
to increase velocity and, hence, leaving loss over the outer half 
of the annulus. 
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The associated exit swirl distributions (Figure 8(b)) again 
show very good agreement between the methods for the lean 
case. There is, however, a significant discrepancy in the hub 
region for zero lean. The 3-D calculation shows a hub swirl of 
almost 50 ° compared with 26 ° from throughflow. This difference 
has been traced to a substantially reduced magnitude of relative 
velocity in the 3-D calculation. The relative flow angles differ 
slightly, the 3-D result showing 3 ° overturning probably due 
to secondary flow effects. The lower relative velocity is thought 
to result from increased numerical losses associated with a 
higher relative inlet Mach number to the rotor blade. 

An investigation of 3-D flow features arising from viscosity 
would require the use of a full Navier Stokes solver such as 
that reported by Dawes. 2 Overall the agreement between the 
throughflow and 3-D Euler computations is good and is very 
good in the lean case, confirming the body force representation 
of lean in the throughflow method. 
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Figure 6 
trailing edge 
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T a b l e  1 Computed mass flows and hub Mach numbers 

Throughflow 3-D Solver 

6, G Mhu b G Mh. b 

0 36.07 1.55 35.55 1.49 
15 36.07 1.27 35.98 1.20 
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Conclusions 

It is possible to represent blade lean within axisymmetric 
turbine through flow calculations by introducing the radial com- 
ponent of a body force which is determined via the blade flow 
deflection correlations intrinsic to the method. The sensitivity 
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Figure 7 Radial distributions of f low swirl angles at stator blade 
trail ing edge 

of the pressure and Mach number profiles to lean angle 
predicted by this method appear very plausible, and the results 
obtained for the leaned case compare well with calculations 
made with a fully 3-D time marching program. 

Further work to minimize extraneous effects from numerical 
viscosity in the time-marching calculations is required to 
provide a more precise comparison of throughflow and 3-D 
methods. 

Stator blade lean can have a significant influence on root 
reaction and the relative inlet velocity field to the rotor. 
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